
COP 4710: Database Systems (Chapter 4) Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Spring 2013

Chapter 4 – Relational Query Languages – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4710/spr2013

COP 4710: Database Systems (Chapter 4) Page 2 Dr. Mark Llewellyn ©

Sample Database Scheme

COP 4710: Database Systems (Chapter 4) Page 3 Dr. Mark Llewellyn ©

1. Find all the supplier numbers for suppliers located in Milan or who ship to

any job in a quantity greater than 40.

 [(s#)((city = Milan)(S))]  [(s#)((qty > 40)(SPJ))]

2. Find all the supplier numbers for suppliers who ship only red parts.

 [(S.name)(((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color=red))(SPJ  S  P))]

  [(S.name)(((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color  red))(SPJ  S  P))]

Some Practice Queries Using Only Five

Fundamental Operators
To simplify the query expressions assume that S = suppliers, P = parts, J = jobs, and SPJ = shipments

COP 4710: Database Systems (Chapter 4) Page 4 Dr. Mark Llewellyn ©

3. Find the supplier names for those suppliers who are located in the same

city as a job to which they ship parts.

• T1 = (S  SPJ  J)

• T2 = (S.s# = SPJ.s#)(T1) //select tuples which match on s#

• T3 = (J.j# = SPJ.j#)(T2) //select tuples which match on j#

• T4 = (J.city = S.city)(T3) //select tuples from the same city

• T5 = (S.name)(T4) //project final attribute set

Some Practice Queries Using Only Five

Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 5 Dr. Mark Llewellyn ©

4. Find all the part numbers which are shipped by both supplier “S1” and

supplier “S2”.

 NOTE: The following expression in not correct! Why not?

 (p#)(((s# = S1) AND (s# = S2))(SPJ))

 The following is the correct way of expressing this query in RA.

 [(p#)((s#=S1)(SPJ)] – ([(p#)((s#=S1)(SPJ)]  [(p#)((s#=S2)(SPJ)])

Some Practice Queries Using Only Five

Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 6 Dr. Mark Llewellyn ©

5. Find the supplier numbers for those suppliers who supply both a red part

and a blue part.

 NOTE: The following expression in not correct! Why not?

 (s#)(((color = blue) AND (SPJ.p# = P.p#) AND (color=red)) (P  SPJ))

The following is the correct way of expressing this query in RA.

 T1 = (s#)(((color = blue) AND (SPJ.p# = P.p#)) (P  SPJ))

 T2 = (s#)(((color = red) AND (SPJ.p# = P.p#)) (P  SPJ))

 T3 = T2 – T1

 T4 = T2 – T3

Some Practice Queries Using Only Five

Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 7 Dr. Mark Llewellyn ©

6. Find all pairs (s#, j#) such that the supplier and the job are located in the

same city, yet that supplier does not have a shipment to that job.

 T1 = (s#, j#)((S.city = J.city)(S  J)) //all (s#,j#) pairs in same city

 T2 = (s#, j#)(((S.city = J.city) AND (SPJ.j# = J.j#) AND (SPJ.s# = S.s#))(S  SPJ  J))

 //T2 contains all (s#,j#) pairs representing shipments by suppliers to jobs

in the same city.

 T3 = T1 – T2

Some Practice Queries Using Only Five

Fundamental Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 8 Dr. Mark Llewellyn ©

 • Unlike the base relations in a database, the intermediate relations
which are produced as the result of the evaluation of a query, do not
have names to which they can be referred. Unless the intermediate
relation is explicitly saved, it does not exist after the execution of the
query. Many times, however, it is quite useful to save an
intermediate relation as it may contain a set of tuples which answer a
related query, or it will contain a set of tuples which can be used to
evaluate another query and saving the intermediate relation will
mean that the same work will not need to be repeated.

• The rename operation is represented by the lowercase Greek letter
rho () and it can be used to rename both relations as well as
attributes.

• The first common form of the rename operation applies to relations.

• General form: new relation name(relation)

• Thus, x(r) renames the relation r to relation x.

Renaming Operator

COP 4710: Database Systems (Chapter 4) Page 9 Dr. Mark Llewellyn ©

• The second form of the rename operation applies to the

renaming of both the relation as well as the attributes of

that relation. Assuming that the operand relation is of

degree n, then the form of this version of the rename

operation is:

• General form: new relation name (A1, A2, …, AN)(relation)

• Thus, x(one, two, …, last)(r) renames relation r to relation x

and the n attributes of relation x are names one, two, …,

last.

Renaming Operator (cont.)

COP 4710: Database Systems (Chapter 4) Page 10 Dr. Mark Llewellyn ©

• It can be proven (although we aren’t going to go through that proof)

that the five fundamental relational operations are sufficient to

express any relational-algebra query.

• What this proof doesn’t state however, is that some complex queries

will require extremely lengthy and difficult query expressions.

• There have been several extensions of the set of operations available

in the relational algebra that provide no additional expressive power,

but do provide a simplification in the expression required for more

complex queries.

• We’ll look at the most important and common of these redundant

operations and also show their definition in terms of the five

fundamental operations

Redundant Operators in Relational Algebra

COP 4710: Database Systems (Chapter 4) Page 11 Dr. Mark Llewellyn ©

• The intersection operation produces the set of tuples that appear in

both operand relations.

Intersection Operator
Type: binary

Symbol: 

General form: r  s where r and s are union compatible relations

Schema of result relation: schema of operation relation

Size of result relation (tuples):  r

Definition: r  s  r  (r  s)

Example:

 ((p#)(SPJ))  ((p#)(P))

COP 4710: Database Systems (Chapter 4) Page 12 Dr. Mark Llewellyn ©

Intersection Operator Examples

A B C D

a a yes 1

b d no 7

c f yes 34

a d no 6

A B C D

a a yes 1

c f yes 34

r = R  S R

E F G H

a a yes 1

b r yes 3

c f yes 34

m n no 56

S

E F G H

a r no 31

b f yes 30

T

A B C D

r = R  T

COP 4710: Database Systems (Chapter 4) Page 13 Dr. Mark Llewellyn ©

• As we saw in some of our earlier query expression which involved

the Cartesian product operator, we had to provide additional

selection operations to remove those combinations of tuples that

resulted from the Cartesian product which weren’t related (they

didn’t make sense like when a shipment of a specific part was

combined with part information but the part information didn’t

belong to the part that was being shipped).

• This occurs so commonly that an operation which is a combination

of the Cartesian product and selection operations was developed

called a join operation.

• There are several different join operations which are called, theta-

join, equijoin, natural join, outer join, and semijoin. We will

examine each of these operations and explore the conditions of their

use.

Join Operators

COP 4710: Database Systems (Chapter 4) Page 14 Dr. Mark Llewellyn ©

• The theta-join operation is a shorthand for a Cartesian product followed by a
selection operation.

• The equijoin operation is a special case of the theta-join operation that
occurs when all of the conditions in the predicate are equality conditions.

• Neither a theta-join nor an equijoin operation eliminates extraneous tuples
by default. Therefore, the elimination of extraneous tuples must be handled
explicitly via the predicate.

Theta-Join and Equijoin Operators
Type: binary

Symbol/general form:

Schema of result relation: concatenation of operand relations

Definition:  (predicate)(r  s)

Examples:

  sr predicate

  sr predicate

  sr 3sizeANDbluecolor  ''   sr 3sizeANDbluecolor  ''

an equijoin a theta-join

COP 4710: Database Systems (Chapter 4) Page 15 Dr. Mark Llewellyn ©

Theta-Join Operator Examples

A B C D

a a yes 1

b d no 7

c f yes 34

a d no 6

A B C D E F G H

a a yes 1 b r yes 3

a a yes 1 c f yes 34

a a yes 1 m n no 56

b d no 7 b r yes 3

b d no 7 c f yes 34

b d no 7 m n no 56

c f yes 34 b r yes 3

c f yes 34 m n no 56

a d no 6 b r yes 3

a d no 6 c f yes 34

a d no 6 m n no 56

R

E F G H

a a yes 1

b r yes 3

c f yes 34

m n no 56

S

SRr)F.SB.R( 

COP 4710: Database Systems (Chapter 4) Page 16 Dr. Mark Llewellyn ©

• The natural-join operation performs an equijoin over all attributes in the two
operand relations which have the same attribute name.

• The degree of the result relation of a natural-join is sum of the degrees of the
two operand relations less the number of attributes which are common to
both operand relations. (In other words, one occurrence of each common
attribute is eliminated from the result relation.)

• The natural join is probably the most common of all the forms of the join
operation. It is extremely useful in the removal of extraneous tuples. Those
attributes which are commonly named between the two operand relations are
commonly referred to as the join attributes.

Natural Join Operator
Type: binary

Symbol/general form:

Schema of result relation: concatenation of operand relations with

only one occurrence of commonly named attributes

Definition: 

Examples:

sr

sr sr ibutescommonattrsibutescommonattrr)..(

pspjs 

COP 4710: Database Systems (Chapter 4) Page 17 Dr. Mark Llewellyn ©

Natural Join Operator Examples

A B C D

a a yes 1

b r no 7

c f yes 34

a m no 6

A B C D M G H

a a yes 1 a yes 1

a a yes 1 f yes 34

a m no 6 n no 56

r = R * S R

B M G H

a a yes 1

b r yes 3

a f yes 34

m n no 56

S

A B G H

a f no 31

b r yes 30

T

A B C D G H

b r no 7 yes 30

r = R * T

COP 4710: Database Systems (Chapter 4) Page 18 Dr. Mark Llewellyn ©

Outer Join Operator

Type: binary

Symbol/general form: left-outer-join: right-outer-join:

 full outer join:

Schema of result relation: concatenation of operand relations

Definition:

  natural join of r and s with tuples from r which do not have a match

in s included in the result. Any missing values from s are set to null.

  natural join of r and s with tuples from s which do not have a match

in r included in the result. Any missing values from r are set to null.

  natural join of r and s with tuples from both r and s which do not

have a match are included in the result. Any missing values are set to null.

Examples: Let r(A,B) = {(a, b), (c, d), (b,c)} and let

 s(A,C) = {(a, d), (s, t), (b, d)}

then = (A,B,C) = {(a,b,d), (b,c,d), (c,d,null)},

 = (A,B,C) = {(a,b,d), (b,c,d), (s,null,t)}, and

 = (A,B,C) = {(a,b,d), (b,c,d), (s,null,t), (c,d,null)},

sr 

sr 

sr 

sr 

sr  sr 

sr 

sr 

sr 

COP 4710: Database Systems (Chapter 4) Page 19 Dr. Mark Llewellyn ©

Outer Join Operator Examples

A B C

1 2 3

4 5 6

7 8 9

A B C D

1 2 3 10

1 2 3 11

4 5 6 null

7 8 9 null

null 6 7 12

R

B C D

2 3 10

2 3 11

6 7 12

S

A B C D

1 2 3 10

1 2 3 11

4 5 6 null

7 8 9 null

SRr  

SRr 
SRr  

B C D A

2 3 10 1

2 3 11 1

6 7 12 null

COP 4710: Database Systems (Chapter 4) Page 20 Dr. Mark Llewellyn ©

c

• This is operator is only useful in a distributed environment.

• The idea behind the semi-join operation is to reduce the number of tuples in a relation
before transferring it to another side for performing a join operation. Intuitively, the
idea is to send the joining column(s) of R to the site where the other relation S is
located; this column(s) is then joined with S. Following that, the join attributes, along
with any attributes in S required in the result are projected out and shipped back to the
original site and joined with R. Hence, only the joining column(s) of R is transferred
in one direction, and a subset of S with no extraneous tuples or attributes is transferred
in the other direction. If only a small fraction of the tuples in S participate in the join,
this can be an extremely efficient operation.

• In its general form, which is shown above, the semi-join is a semi-theta-join. The
expected variants of a semi-equijoin and a semi-natural-join are defined in a similar
fashion.

Semi Join Operator
Type: binary

Symbol/general form:

Schema of result relation: schema of r

Definition:  (attributes of r)

Examples: see next page

  sr predicate

  sr predicate   sr predicate

COP 4710: Database Systems (Chapter 4) Page 21 Dr. Mark Llewellyn ©

Semi Join Operator Examples

A B C D

a a yes 1

b r no 7

c f yes 34

a m no 6

A B C D

b r no 7

c f yes 34

a m no 6

R

B M C

a e yes

b r yes

a f no

r n no

S B M C

a e yes

a f no

b r yes

r n no

B G D

a 4 d

b 7 e

a 4 f

m 2 g

T

SRr)M.SB.R( 

TSr)4G.T( 

SRr 

A B C D

a a yes 1

b r no 7

TSr gMSANDGT).()4.( 

B M C

b r yes

r n no

COP 4710: Database Systems (Chapter 4) Page 22 Dr. Mark Llewellyn ©

c

Requirements for the division operation:

1. Relation r is defined over the attribute set A and relation s is defined over the
attribute set B such that B  A.

2. Let C be the set of attributes in A  B.

Given these constraints the division operation is defined as: a tuple t is in rs if for
every tuple ts in s there is a tuple tr in r which satisfies both:

 tr [C] = ts [C] and tr [A-B] = t[A-B]

Division Operator
Type: binary

Symbol/general form: r  s where r({A}) and s({B})

Schema of result relation: C where C = A  B

Definition: rs  (A-B)(r)  ((A-B)(((A-B)(r)  s)  r))

 Examples:

Let r(A,B,C) = {(a,b,c), (a,d,d), (a,b,d), (a,c,c), (a,d,d)}

and s(C) = {(c), (d)}

then: r s = t(A,B) = {(a,b)}

COP 4710: Database Systems (Chapter 4) Page 23 Dr. Mark Llewellyn ©

Division Operator Examples

A B C D

a f yes 1

b r no 1

a f yes 34

e g yes 34

a m no 6

b r no 34

A B C

a f yes

b r no

R

D

1

34

S

A

a

C D

yes 1

yes 34

T

SRr  TRr 

A B

a f

U

C D

no 1

no 34

URr 

A B

b r

B C D

f yes 1

f yes 34

m no 6

V

VRr 

B C D

f yes 1

g yes 69

W

A

WRr 

COP 4710: Database Systems (Chapter 4) Page 24 Dr. Mark Llewellyn ©

• The redundant relational algebra operators are redundant

because they are all defined in terms of the five
fundamental operators.

• Their usefulness however, is best illustrated by the
division operator.

• Consider the following query based on the suppliers-
parts-jobs-shipment database given earlier:

 Query: Find the supplier numbers for those suppliers
who ship every part.

• A solution to this query is given on the next page using
only the five fundamental operators and then again using
the redundant operators.

Usefulness of the Redundant Operators

COP 4710: Database Systems (Chapter 4) Page 25 Dr. Mark Llewellyn ©

 Using only the five fundamental operators

• T1 = (s#, p#)(spj) //all (s#,p#) pairs for actual shipments

• T2 = (p#)(p) //all (p#) {all parts that exist, whether shipped or not}

• T3 = (s#)(T1)  T2 //all s# in T1 paired with every tuple in T2 {spj.s#, p.p#}

• T4 = T3 – T1 //all tuples in T3 which are not also in T1

• T5 = T1 – T4 //all tuples in T1 which are not also in T4.

• T6 = (s#)(T5) //solution

 Final solution is: (s#)(spj)  ((s#)(((s#)(spj)  p)  spj))

Using the redundant operators

 Solution is: ((s#, p#)(spj))  ((p#)(p))

Usefulness of the Redundant Operators (cont.)

COP 4710: Database Systems (Chapter 4) Page 26 Dr. Mark Llewellyn ©

1. List all pairs of supplier numbers for suppliers who are

located in the same city.

2. List every shipment involving a green part.

3. List all the supplier numbers for suppliers who ship a part

that is manufactured in the same city in which the

supplier is located.

4. List the names of those suppliers who ship all the blue

parts.

5. List the supplier numbers for those suppliers who ship

only blue parts.

Practice Queries Using All Relational Algebra

Operators (Answers on Next Page)

COP 4710: Database Systems (Chapter 4) Page 27 Dr. Mark Llewellyn ©

Practice Queries Using All Relational Algebra

Operators (Answers)

 (. #, . #) . .
((()))

s s x s xs city x city
s s 


1.

2.
()(())
color green

spj p




3.

4.

5.

(. #)()
s s

s p spj  

(.) (#, #) (#) ()((() (())))
s name s p p color blue

s spj p   


 

(#) () (#) ()(((()))) (((())))
s color blue s color blue

spj p spj p   
 

  

COP 4710: Database Systems (Chapter 4) Page 28 Dr. Mark Llewellyn ©

 • Relational algebra was a procedural query language. You specified

in the query expression what data you wanted (this was usually given

by the final projection) and you specified how the DBMS was to go

about getting this data. The how was specified in the sequence of

operations that you put together in order to answer your query.

• Relational calculus is a non-procedural query language that has two

basic forms: tuple relational calculus and domain relational

calculus. While they are similar in nature there are fundamental

differences in the two forms.

• For now, we will focus on the tuple relational calculus. We won’t

look at either of the calculus languages in quite the same detail that

we did with the relational algebra, we’re more interested here in

giving you an idea of what these pure languages look like since they

form the foundation of the implemented languages such as SQL that

we’ll see later.

Tuple Relational Calculus

COP 4710: Database Systems (Chapter 4) Page 29 Dr. Mark Llewellyn ©

 • Tuple relational calculus was used as the basis for the query

language of the INGRES database system developed at Bell Labs in

the late 1970s and domain relational calculus is the basis for the

query language QBE (Query-By-Example) developed by IBM as

part of the system R project also in the early 1970’s.

• In terms of completeness, tuple relational calculus and relational

algebra are equivalent. By completeness we mean that any query

which can be expressed in relational algebra can also be expressed in

tuple calculus and vice versa.

• Tuple calculus is based upon first-order predicate calculus, which is

the calculus of logic. The basic tuple calculus expression looks like

the following:

 { t | P(t)} read as: the set of tuples t such that the predicate P is true.

 t is a tuple variable.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 30 Dr. Mark Llewellyn ©

 • A tuple variable is simply a variable which at any time can assume

the value of one of the tuples in a relation instance.

• A tuple variable “ranges over” or assumes values from only a single

relation instance at a time.

• The typical notation for indicating the range of a tuple variable is:

tuple-variable(relation).

– An example might be: t(S) which would indicate that tuple variable t

assumes values which are tuples from the relation named S.

• Since a tuple variable takes on values which are entire tuples from a

given relation and we often need only a subset of the attributes

contained in a given tuple, the notation for this is tuple-

variable.attribute-name. Notice that this is basically the same

notation as we used for the qualified attribute name in the relational

algebra.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 31 Dr. Mark Llewellyn ©

 • In general, the predicate consists of any number of tuple variables

occurring in what are known as well-formed formulas (WFFs in

predicate calculus parlance).

• A tuple variable exists in one of two states, either free or bound. A

tuple variable is bound to a WFF through a quantifier.

• There are essentially two quantifiers of concern: the existence

quantifier (denoted by the symbol ) and the universal quantifier

(denoted by ).

• The only free tuple variables that can exist in a tuple calculus

expression are those which appear to the left of the “such that” bar.

• If f is a WFF and t is a tuple variable, then if t is free in f it is bound

in both t(f) and t(f). In other words, the quantification of t causes

its binding to a WFF (predicate).

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 32 Dr. Mark Llewellyn ©

 • ALL WFFs evaluate to either true or false. In other

words, the predicate is either satisfied by the tuple

variables or it isn’t.

• Thus the WFF, t(f) evaluates to true if there exists some

tuple t which makes the predicate f true. If there does not

exist a tuple (that can be assigned to t) which makes the

predicate f true, then the value of this WFF must be false.

• Similarly, the WFF, t(f) evaluates to true only if every

tuple which can be assigned to t makes the predicate true.

If there exists even a single tuple for which the predicate

is false, then the WFF will evaluate to false.

Tuple Relational Calculus (cont.)

COP 4710: Database Systems (Chapter 4) Page 33 Dr. Mark Llewellyn ©

• To see that the tuple calculus is equivalent to relational algebra (and vice

versa), I’ve included the definitions of several of the more common

relational algebra operators as they would appear in the tuple calculus.

You don’t need to remember these equivalences, just look at them and

convince yourself that they are the same.

• Union: R  S  {t | t(R) or t(S)} //set of tuples | tR or tS

• Intersection: R  S  {t | t(R) and t(S)} //set of tuples | tR and tS

• Difference: R – S  {t | t(R) and not(t(S))} //set of tuples | tR and tS

• Selection: (p)(R)  {t | t(R) and P(t)} // tuples t | tR and p is true

Equivalence of Tuple Relational Calculus

and Relational Algebra

COP 4710: Database Systems (Chapter 4) Page 34 Dr. Mark Llewellyn ©

• The four relational algebra operations above are fairly simple to express

in tuple calculus, however projection and Cartesian product are not quite

as simple as you can see below and the join operations get quite nasty, so

we’ll avoid them altogether.

• Cartesian product:

 R  S  {t(r+s) | u(R) (v(S)(t[1]=u[1] and …and t[r]=u[r] and

• t[r+1]=v[1] and…and t[r+s]=v[s]))}

 The notation t(r+s) indicates the degree of the tuple variable which in the

case of the Cartesian product is the sum of the degrees of the two

operand relations.

• Projection:

Equivalence of Tuple Relational Calculus

and Relational Algebra (cont.)

 ])i[utandand]i[ut()R(ut)R(kk11
k

)i,...,i,i(k21
 

COP 4710: Database Systems (Chapter 4) Page 35 Dr. Mark Llewellyn ©

 Query #1

English: List the names of the suppliers who are located in Orlando.

tuple calculus: {t.name | t(suppliers) and t.city = “Orlando”}

• This query sets up a tuple variable named t that ranges

over the suppliers relation and “selects” those tuples

which make the predicate “city = Orlando” true.

relational algebra: (name)((city = Orlando)(p))

Example Tuple Relational Calculus Queries

COP 4710: Database Systems (Chapter 4) Page 36 Dr. Mark Llewellyn ©

 Query #2

English: For every part list the name of the part and its

weight.

 tuple calculus: {t.name, t.weight | t(parts)}

• This query is more simple than the first in that for every

tuple in the parts relation we are simply listing the two

attributes of name and weight.

relational algebra: (name, weight)(p)

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 37 Dr. Mark Llewellyn ©

 Query #3

English: List the part numbers for parts shipped to jobs located in Madrid.

 tuple calculus: {x.p# | x(spj) and (y(j) and y.city=”Madrid” and
y.j# = x.j#)}

• This query is a little bit more complicated since two relations are
involved. Tuple variable x is the only free variable (as it must be)
and tuple variable y is bound to the WFF which includes the
predicates y.city=Madrid and y.j# =x.j#. The way this basically
works is this: x assumes the value of one of the tuples from the spj
relation (the relation it ranges over) and for each value of x the we
are “searching” for value of y, which ranges over the jobs relation,
that will make the predicate true. If such a tuple y exists, then the
part number from the x tuple variable is “returned” to the resulting
relation.

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 38 Dr. Mark Llewellyn ©

 Query #4

English: List the supplier numbers for suppliers who do not ship part P2.

 tuple calculus: {y.s# | y(s) and not(x(spj) and x.p#=”P2” and y.s#=x.s#)}

• For this query we are looking for the existence of a tuple variable y

(which ranges over the suppliers relation) for which we cannot find

the existence of a tuple variable y (which ranges over spj) that makes

the predicate true. In other words, if there does exist a tuple in spj

with the same supplier number as in the y tuple variable and for

which the part number is P2, then this is a supplier who ships part P2

and they should not be included in the result relation.

relational algebra: ((s#)(s)) – ((s#)((p#=P2)(spj)))

Example Tuple Relational Calculus Queries (cont.)

COP 4710: Database Systems (Chapter 4) Page 39 Dr. Mark Llewellyn ©

 • In general, the quantifiers can be transformed into the

other quantifier with negation, and/or replace one

another, a negated formula becomes un-negated and an

un-negated formula becomes negated.

• There are however, some special cases which arise in

these equivalences of which you need to be aware.

• A few of the more important ones are shown below along

with one which is commonly used by many people, but is

incorrect!

Quantifier Implications and Equivalences

COP 4710: Database Systems (Chapter 4) Page 40 Dr. Mark Llewellyn ©

 1. x(P(x))  not x(not P(x))

2. not(x)(P(x))  not(x)(P(x))

3. (x)(P(x))  not (x)(not (P(x)))

4. (x)(P(x) and Q(x))  not (x)(not (P(x)) or not (Q(x)))

5. (x)(P(x) or Q(x))  not (x)(not (P(x)) and not (Q(x)))

6. (x)(P(x)) or Q(x))  not (x)(not (P(x)) and not (Q(x)))

7. (x)(P(x) and Q(x))  not (x)(not (P(x)) or not (Q(x)))

8. (x)(P(x))  (x)(P(x))

9. not(x)(P(x))  not(x)(P(x)) this implication is not true!

Quantifier Implications and Equivalences (cont.)

COP 4710: Database Systems (Chapter 4) Page 41 Dr. Mark Llewellyn ©

 • Equivalence 1 can be interpreted in the following manner when
considering the right hand side: “there does not exist a value for x
for which the predicate is not true”. The flip side of this is, of
course, for every value of x the predicate must be true.

• Implication 2 can be interpreted in the following manner: (left hand
side)“there does not exist a value for x for which the predicate is
true” implies that (right hand side) the predicate is not true for every
value of x”. This one you might have to think about for a minute.
Looking at it from another direction consider this: if there exists a
value of x that makes the predicate true, then the not in front of the
expression would result in a value of false. So, the only way that the
left hand side could be true would be the situation when all possible
values of x cause the predicate to be false, in which case the not will
evaluate to true. From the right hand side think of it this way: if
there is one single value that x can assume which makes the
predicate false, then the universal quantifier will return false, yet the
negation in front of it would return true for this case.

Quantifier Implications and Equivalences (cont.)

COP 4710: Database Systems (Chapter 4) Page 42 Dr. Mark Llewellyn ©

 • Implication 9 is simply wrong, but it is often mistakenly
used, especially by beginning database students … so
don’t you become one of these who do it wrong!

• The implication is that if not every value of x makes the
predicate true then this implies that there does not exist a
value of x which does make the predicate true. Clearly,
this is not necessarily the case.

– As an illustration, suppose that there are 12 tuples in our
universal space, so x can assume any of these 12 tuples. Now
let’s suppose that 10 of these tuples satisfy the predicate P and 2
of these tuples do not satisfy P. Then clearly not every value of x
satisfies P, but at the same time we cannot say that there does not
exist any values of x which satisfy P, since in this case there were
10 of them that did. So clearly, this implication is false, so don’t
be tempted to use it.

Quantifier Implications and Equivalences (cont.)

