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Sample Database Scheme  
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1.   Find all the supplier numbers for suppliers located in Milan or who ship to 

any job in a quantity greater than 40. 

           [(s#)((city = Milan)(S))]  [(s#)((qty > 40)(SPJ))] 

 

2.    Find all the supplier numbers for suppliers who ship only red parts. 

    [(S.name)(((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color=red))(SPJ  S  P))] 

  [(S.name)(((SPJ.s#=S.S#) AND (SPJ.p#=P.p#) AND (color  red))(SPJ  S  P))] 

 

Some Practice Queries Using Only Five 

Fundamental Operators 
To simplify the query expressions assume that S = suppliers, P = parts, J = jobs, and SPJ = shipments 
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3. Find the supplier names for those suppliers who are located in the same   

city as a job to which they ship parts. 

• T1 = (S  SPJ  J) 

• T2 = (S.s# = SPJ.s#)(T1)   //select tuples which match on s# 

• T3 = (J.j# = SPJ.j#)(T2)   //select tuples which match on j# 

• T4 = (J.city = S.city)(T3)  //select tuples from the same city 

• T5 = (S.name)(T4)  //project final attribute set 

 

 

 

Some Practice Queries Using Only Five 

Fundamental Operators (cont.) 
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4.     Find all the part numbers which are shipped by both supplier “S1” and 

supplier “S2”. 

 NOTE:  The following expression in not correct!  Why not? 

  (p#)(((s# = S1) AND (s# = S2))(SPJ)) 

 

 The following is the correct way of expressing this query in RA. 

     [(p#)((s#=S1)(SPJ)] – ([(p#)((s#=S1)(SPJ)]  [(p#)((s#=S2)(SPJ)]) 

Some Practice Queries Using Only Five 

Fundamental Operators (cont.) 
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5. Find the supplier numbers for those suppliers who supply both a red part 

and a blue part. 

 NOTE:  The following expression in not correct!  Why not? 

   (s#)(((color = blue) AND (SPJ.p# = P.p#) AND (color=red)) (P  SPJ)) 

 

The following is the correct way of expressing this query in RA. 

  T1 = (s#)(((color = blue) AND (SPJ.p# = P.p#)) (P  SPJ)) 

  T2 = (s#)(((color = red) AND (SPJ.p# = P.p#)) (P  SPJ)) 

  T3 = T2 – T1 

  T4 = T2 – T3 

  

Some Practice Queries Using Only Five 

Fundamental Operators (cont.) 
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6.      Find all pairs (s#, j#) such that the supplier and the job are located in the 

same city, yet that supplier does not have a shipment to that job. 

 

 T1 = (s#, j#)((S.city = J.city)(S  J))  //all (s#,j#) pairs in same city 

 T2 = (s#, j#)(((S.city = J.city) AND (SPJ.j# = J.j#) AND (SPJ.s# = S.s#))(S  SPJ  J))   

 //T2 contains all (s#,j#) pairs representing shipments by suppliers to jobs 

in the same city. 

 T3 = T1 – T2 

  

 

Some Practice Queries Using Only Five 

Fundamental Operators (cont.) 
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  • Unlike the base relations in a database, the intermediate relations 
which are produced as the result of the evaluation of a query, do not 
have names to which they can be referred.  Unless the intermediate 
relation is explicitly saved, it does not exist after the execution of the 
query.  Many times, however, it is quite useful to save an 
intermediate relation as it may contain a set of tuples which answer a 
related query, or it will contain a set of tuples which can be used to 
evaluate another query and saving the intermediate relation will 
mean that the same work will not need to be repeated.   

• The rename operation is represented by the lowercase Greek letter 
rho () and it can be used to rename both relations as well as 
attributes.  

• The first common form of the rename operation applies to relations.   

•   General form:  new relation name(relation) 

•  Thus, x(r) renames the relation r to relation x. 

 

Renaming Operator 
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• The second form of the rename operation applies to the 

renaming of both the relation as well as the attributes of 

that relation.  Assuming that the operand relation is of 

degree n, then the form of this version of the rename 

operation is:  

•  General form:  new relation name (A1, A2, …, AN)(relation)  

•  Thus, x(one, two, …, last)(r) renames relation r to relation x 

and the n attributes of relation x are names one, two, …, 

last. 

 

 

Renaming Operator (cont.) 



COP 4710: Database Systems  (Chapter 4)              Page 10                 Dr. Mark Llewellyn © 

  
• It can be proven (although we aren’t going to go through that proof) 

that the five fundamental relational operations are sufficient to 

express any relational-algebra query. 

• What this proof doesn’t state however, is that some complex queries 

will require extremely lengthy and difficult query expressions. 

• There have been several extensions of the set of operations available 

in the relational algebra that provide no additional expressive power, 

but do provide a simplification in the expression required for more 

complex queries. 

• We’ll look at the most important and common of these redundant 

operations and also show their definition in terms of the five 

fundamental operations  

 

Redundant Operators in Relational Algebra 
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• The intersection operation produces the set of tuples that appear in 

both operand relations. 

 

Intersection Operator 
Type: binary 

Symbol:  

General form:  r  s where r and s are union compatible relations 

Schema of result relation: schema of operation relation 

Size of result relation (tuples):   r 

Definition:  r  s  r  (r  s) 

Example:  

  ((p#)(SPJ))  ((p#)(P))  
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Intersection Operator Examples 

A B C D 

a a yes 1 

b d no 7 

c f yes 34 

a d no 6 

A B C D 

a a yes 1 

c f yes 34 

r = R  S R 

E F G H 

a a yes 1 

b r yes 3 

c f yes 34 

m n no 56 

S 

E F G H 

a r no 31 

b f yes 30 

T 

A B C D 

r = R  T 
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• As we saw in some of our earlier query expression which involved 

the Cartesian product operator, we had to provide additional 

selection operations to remove those combinations of tuples that 

resulted from the Cartesian product which weren’t related (they 

didn’t make sense like when a shipment of a specific part was 

combined with part information but the part information didn’t 

belong to the part that was being shipped). 

• This occurs so commonly that an operation which is a combination 

of the Cartesian product and selection operations was developed 

called a join operation. 

• There are several different join operations which are called, theta-

join, equijoin, natural join, outer join, and semijoin.  We will 

examine each of these operations and explore the conditions of their 

use. 

 

Join Operators 
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• The theta-join operation is a shorthand for a Cartesian product followed by a 
selection operation. 

• The equijoin operation is a special case of the theta-join operation that 
occurs when all of the conditions in the predicate are equality conditions. 

• Neither a theta-join nor an equijoin operation eliminates extraneous tuples 
by default.  Therefore, the elimination of extraneous tuples must be handled 
explicitly via the predicate. 

 

Theta-Join and Equijoin Operators 
Type: binary 

Symbol/general form:   

Schema of result relation: concatenation of operand relations 

Definition:                           (predicate)(r  s) 

Examples:  

  

  

  

 

  sr predicate

  sr predicate

  sr 3sizeANDbluecolor  ''   sr 3sizeANDbluecolor  ''

an equijoin a theta-join 
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Theta-Join Operator Examples 

A B C D 

a a yes 1 

b d no 7 

c f yes 34 

a d no 6 

A B C D E F G H 

a a yes 1 b r yes 3 

a a yes 1 c f yes 34 

a a yes 1 m n no 56 

b d no 7 b r yes 3 

b d no 7 c f yes 34 

b d no 7 m n no 56 

c f yes 34 b r yes 3 

c f yes 34 m n no 56 

a d no 6 b r yes 3 

a d no 6 c f yes 34 

a d no 6 m n no 56 

R 

E F G H 

a a yes 1 

b r yes 3 

c f yes 34 

m n no 56 

S 

SRr )F.SB.R(  
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• The natural-join operation performs an equijoin over all attributes in the two 
operand relations which have the same attribute name. 

• The degree of the result relation of a natural-join is sum of the degrees of the 
two operand relations less the number of attributes which are common to 
both operand relations.  (In other words, one occurrence of each common 
attribute is eliminated from the result relation.) 

• The natural join is probably the most common of all the forms of the join 
operation.  It is extremely useful in the removal of extraneous tuples.  Those 
attributes which are commonly named between the two operand relations are 
commonly referred to as the join attributes. 

 

Natural Join Operator 
Type: binary 

Symbol/general form:   

Schema of result relation: concatenation of operand relations with 

only one occurrence of commonly named attributes 

Definition:              

Examples:    

 

sr

sr sr ibutescommonattrsibutescommonattrr )..( 

pspjs 
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Natural Join Operator Examples 

A B C D 

a a yes 1 

b r no 7 

c f yes 34 

a m no 6 

A B C D M G H 

a a yes 1 a yes 1 

a a yes 1 f yes 34 

a m no 6 n no 56 

r = R * S R 

B M G H 

a a yes 1 

b r yes 3 

a f yes 34 

m n no 56 

S 

A B G H 

a f no 31 

b r yes 30 

T 

A B C D G H 

b r no 7 yes 30 

r = R * T 
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Outer Join Operator 

Type: binary 

Symbol/general form:   left-outer-join:   right-outer-join: 

        full outer join:  

Schema of result relation: concatenation of operand relations 

Definition:  

  natural join of r and s with tuples from r which do not have a match 

in s included in the result.  Any missing values from s are set to null. 

       natural join of r and s with tuples from s which do not have a match 

in r included in the result.  Any missing values from r are set to null. 

                 natural join of r and s with tuples from both r and s which do not 

have a match are included in the result.  Any missing values  are set to null. 

Examples:  Let  r(A,B) = {(a, b), (c, d), (b,c)} and let 

                 s(A,C) = {(a, d), (s, t), (b, d)}  

then              = (A,B,C) = {(a,b,d), (b,c,d), (c,d,null)}, 

                           = (A,B,C) = {(a,b,d), (b,c,d), (s,null,t)}, and 

                                    = (A,B,C) = {(a,b,d), (b,c,d), (s,null,t), (c,d,null)},  
 

sr 

sr 

sr 

sr 

sr  sr 

sr 

sr 

sr 
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Outer Join Operator Examples 

A B C 

1 2 3 

4 5 6 

7 8 9 

A B C D 

1 2 3 10 

1 2 3 11 

4 5 6 null 

7 8 9 null 

null 6 7 12 

R 

B C D 

2 3 10 

2 3 11 

6 7 12 

S 

A B C D 

1 2 3 10 

1 2 3 11 

4 5 6 null 

7 8 9 null 

SRr  

SRr 
SRr  

B C D A 

2 3 10 1 

2 3 11 1 

6 7 12 null 
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c 

• This is operator is only useful in a distributed environment. 

• The idea behind the semi-join operation is to reduce the number of tuples in a relation 
before transferring it to another side for performing a join operation.  Intuitively, the 
idea is to send the joining column(s) of R to the site where the other relation S is 
located; this column(s) is then joined with S.  Following that, the join attributes, along 
with any attributes in S required in the result are projected out and shipped back to the 
original site and joined with R.  Hence, only the joining column(s) of R is transferred 
in one direction, and a subset of S with no extraneous tuples or attributes is transferred 
in the other direction.  If only a small fraction of the tuples in S participate in the join, 
this can be an extremely efficient operation.  

• In its general form, which is shown above, the semi-join is a semi-theta-join.  The 
expected variants of a semi-equijoin and a semi-natural-join are defined in a similar 
fashion.  

Semi Join Operator 
Type: binary 

Symbol/general form:   

Schema of result relation: schema of r 

Definition:                        (attributes of r) 

Examples: see next page 

  sr predicate

  sr predicate   sr predicate
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Semi Join Operator Examples 

A B C D 

a a yes 1 

b r no 7 

c f yes 34 

a m no 6 

A B C D 

b r no 7 

c f yes 34 

a m no 6 

R 

B M C 

a e yes 

b r yes 

a f no 

r n no 

S B M C 

a e yes 

a f no 

b r yes 

r n no 

B G D 

a 4 d 

b 7 e 

a 4 f 

m 2 g 

T 

SRr )M.SB.R(  

TSr )4G.T(  

SRr 

A B C D 

a a yes 1 

b r no 7 

TSr gMSANDGT ).()4.(  

B M C 

b r yes 

r n no 
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c 

Requirements for the division operation: 

1.     Relation r is defined over the attribute set A and relation s is defined over the 
attribute set B such that B  A.  

2. Let C be the set of attributes in A  B. 

Given these constraints the division operation is defined as: a tuple t is in rs if for 
every tuple ts in s there is a tuple tr in r which satisfies both: 

  tr [C] = ts [C]  and tr [A-B] = t[A-B] 

 

 

Division Operator 
Type: binary 

Symbol/general form:  r  s where r({A}) and s({B}) 

Schema of result relation: C where C = A  B 

Definition: rs  (A-B)(r)  ((A-B)(((A-B)(r)  s)  r)) 

 Examples:  

Let r(A,B,C) = {(a,b,c), (a,d,d), (a,b,d), (a,c,c), (a,d,d)} 

and s(C) = {(c), (d)} 

then: r s = t(A,B) = {(a,b)} 
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Division Operator Examples 

A B C D 

a f yes 1 

b r no 1 

a f yes 34 

e g yes 34 

a m no 6 

b r no  34 

A B C 

a f yes 

b r no 

R 

D 

1 

34 

S 

A 

a 

C D 

yes 1 

yes 34 

T 

SRr  TRr 

A B 

a f 

U 

C D 

no 1 

no 34 

URr 

A B 

b r 

B C D 

f yes 1 

f yes 34 

m no 6 

V 

VRr 

B C D 

f yes 1 

g yes 69 

W 

A 

WRr 
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• The redundant relational algebra operators are redundant 

because they are all defined in terms of the five 
fundamental operators. 

• Their usefulness however, is best illustrated by the 
division operator.   

• Consider the following query based on the suppliers-
parts-jobs-shipment database given earlier: 

 Query:  Find the supplier numbers for those suppliers 
who ship every part. 

• A solution to this query is given on the next page using 
only the five fundamental operators and then again using 
the redundant operators. 

Usefulness of the Redundant Operators 
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  Using only the five fundamental operators 

• T1 = (s#, p#)(spj)   //all (s#,p#) pairs for actual shipments 

• T2 = (p#)(p)  //all (p#)  {all parts that exist, whether shipped or not} 

• T3 = (s#)(T1)  T2 //all s# in T1 paired with every tuple in T2  {spj.s#, p.p#} 

• T4 = T3 – T1 //all tuples in T3 which are not also in T1 

• T5 = T1 – T4 //all tuples in T1 which are not also in T4. 

• T6 = (s#)(T5)  //solution 

 Final solution is: (s#)(spj)  ((s#)(((s#)(spj)  p)  spj)) 

Using the redundant operators 

 Solution is:  ((s#, p#)(spj))  ((p#)(p)) 

Usefulness of the Redundant Operators (cont.) 
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1. List all pairs of supplier numbers for suppliers who are 

located in the same city. 

2. List every shipment involving a green part. 

3. List all the supplier numbers for suppliers who ship a part 

that is manufactured in the same city in which the 

supplier is located. 

4. List the names of those suppliers who ship all the blue 

parts.  

5. List the supplier numbers for those suppliers who ship 

only blue parts.  

Practice Queries Using All Relational Algebra 

Operators (Answers on Next Page) 
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Practice Queries Using All Relational Algebra 

Operators (Answers) 

 ( . #, . #) . .
( ( ( )))

s s x s xs city x city
s s 


1. 

2. 
( )( ( ))
color green

spj p




3. 

4. 

5. 

( . #)( )
s s

s p spj  

( . ) ( #, #) ( #) ( )( ( ( ) ( ( ))))
s name s p p color blue

s spj p   


 

( #) ( ) ( #) ( )( ( ( ( )))) ( ( ( ( ))))
s color blue s color blue

spj p spj p   
 

  
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  • Relational algebra was a procedural query language.  You specified 

in the query expression what data you wanted (this was usually given 

by the final projection) and you specified how the DBMS was to go 

about getting this data.  The how was specified in the sequence of 

operations that you put together in order to answer your query. 

• Relational calculus is a non-procedural query language that has two 

basic forms: tuple relational calculus and domain relational 

calculus.  While they are similar in nature there are fundamental 

differences in the two forms. 

• For now, we will focus on the tuple relational calculus.  We won’t 

look at either of the calculus languages in quite the same detail that 

we did with the relational algebra, we’re more interested here in 

giving you an idea of what these pure languages look like since they 

form the foundation of the implemented languages such as SQL that 

we’ll see later. 

Tuple Relational Calculus 
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  • Tuple relational calculus was used as the basis for the query 

language of the INGRES database system developed at Bell Labs in 

the late 1970s and domain relational calculus is the basis for the 

query language QBE (Query-By-Example) developed by IBM as 

part of the system R project also in the early 1970’s. 

• In terms of completeness, tuple relational calculus and relational 

algebra are equivalent.  By completeness we mean that any query 

which can be expressed in relational algebra can also be expressed in 

tuple calculus and vice versa.  

• Tuple calculus is based upon first-order predicate calculus, which is 

the calculus of logic.  The basic tuple calculus expression looks like 

the following:  

 { t | P(t)}  read as:  the set of tuples t such that the predicate P is true. 

    t is a tuple variable. 

 

 

Tuple Relational Calculus (cont.) 



COP 4710: Database Systems  (Chapter 4)              Page 30                 Dr. Mark Llewellyn © 

  • A tuple variable is simply a variable which at any time can assume 

the value of one of the tuples in a relation instance. 

• A tuple variable “ranges over” or assumes values from only a single 

relation instance at a time. 

• The typical notation for indicating the range of a tuple variable is:  

tuple-variable(relation). 

– An example might be: t(S) which would indicate that tuple variable t 

assumes values which are tuples from the relation named S. 

• Since a tuple variable takes on values which are entire tuples from a 

given relation and we often need only a subset of the attributes 

contained in a given tuple, the notation for this is tuple-

variable.attribute-name.  Notice that this is basically the same 

notation as we used for the qualified attribute name in the relational 

algebra. 

 

Tuple Relational Calculus (cont.) 



COP 4710: Database Systems  (Chapter 4)              Page 31                 Dr. Mark Llewellyn © 

  • In general, the predicate consists of any number of tuple variables 

occurring in what are known as well-formed formulas (WFFs in 

predicate calculus parlance).   

• A tuple variable exists in one of two states, either free or bound.  A 

tuple variable is bound to a WFF through a quantifier.   

• There are essentially two quantifiers of concern: the existence 

quantifier (denoted by the symbol ) and the universal quantifier 

(denoted by ).  

• The only free tuple variables that can exist in a tuple calculus 

expression are those which appear to the left of the “such that” bar. 

• If f is a WFF and t is a tuple variable, then if t is free in f it is bound 

in both t(f) and t(f). In other words, the quantification of t causes 

its binding to a WFF (predicate). 

Tuple Relational Calculus (cont.) 
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  • ALL WFFs evaluate to either true or false.  In other 

words, the predicate is either satisfied by the tuple 

variables or it isn’t. 

• Thus the WFF, t(f)  evaluates to true if there exists some 

tuple t which makes the predicate f true.  If there does not 

exist a tuple (that can be assigned to t) which makes the 

predicate f true, then the value of this WFF must be false. 

• Similarly, the WFF, t(f) evaluates to true only if every 

tuple which can be assigned to t makes the predicate true.  

If there exists even a single tuple for which the predicate 

is false, then the WFF will evaluate to false.  

 

Tuple Relational Calculus (cont.) 
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• To see that the tuple calculus is equivalent to relational algebra (and vice 

versa), I’ve included the definitions of several of the more common 

relational algebra operators as they would appear in the tuple calculus.  

You don’t need to remember these equivalences, just look at them and 

convince yourself that they are the same. 

• Union:  R  S  {t | t(R) or t(S)}   //set of tuples | tR or tS 

• Intersection: R  S  {t | t(R) and t(S)}  //set of tuples | tR and tS 

• Difference: R – S  {t | t(R) and not(t(S))}  //set of tuples | tR and tS 

• Selection: (p)(R)  {t | t(R) and P(t)}  // tuples t | tR and p is true 

Equivalence of Tuple Relational Calculus 

and Relational Algebra 
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• The four relational algebra operations above are fairly simple to express 

in tuple calculus, however projection and Cartesian product are not quite 

as simple as you can see below and the join operations get quite nasty, so 

we’ll avoid them altogether.   

•  Cartesian product: 

               R  S  {t(r+s) | u(R) (v(S)( t[1]=u[1] and …and t[r]=u[r] and 

•     t[r+1]=v[1] and…and t[r+s]=v[s]))} 

 The notation t(r+s) indicates the degree of the tuple variable which in the 

case of the Cartesian product is the sum of the degrees of the two 

operand relations. 

• Projection: 

 

Equivalence of Tuple Relational Calculus 

and Relational Algebra (cont.) 
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  Query #1 

English:  List the names of the suppliers who are located in Orlando. 

 

tuple calculus:  {t.name | t(suppliers) and t.city = “Orlando”} 

• This query sets up a tuple variable named t that ranges 

over the suppliers relation and “selects” those tuples 

which make the predicate “city = Orlando” true. 

 

relational algebra:  (name)((city = Orlando)(p))  

Example Tuple Relational Calculus Queries 
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  Query #2 

English:  For every part list the name of the part and its 

weight. 

 tuple calculus:  {t.name, t.weight | t(parts)} 

• This query is more simple than the first in that for every 

tuple in the parts relation we are simply listing the two 

attributes of name and weight. 

  

relational algebra:  (name, weight)(p) 

 

Example Tuple Relational Calculus Queries (cont.) 
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  Query #3 

English:  List the part numbers for parts shipped to jobs located in Madrid. 

  tuple calculus:  {x.p# | x(spj) and (y(j) and y.city=”Madrid” and 
y.j# = x.j#)} 

  

• This query is a little bit more complicated since two relations are 
involved.  Tuple variable x is the only free variable (as it must be) 
and tuple variable y is bound to the WFF which includes the 
predicates y.city=Madrid and y.j# =x.j#.  The way this basically 
works is this:  x assumes the value of one of the tuples from the spj 
relation (the relation it ranges over) and for each value of x the we 
are “searching” for value of y, which ranges over the jobs relation, 
that will make the predicate true.  If such a tuple y exists, then the 
part number from the x tuple variable is “returned” to the resulting 
relation. 

 

Example Tuple Relational Calculus Queries (cont.) 
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  Query #4 

English:  List the supplier numbers for suppliers who do not ship part P2. 

 tuple calculus: {y.s# | y(s) and not(x(spj) and x.p#=”P2” and y.s#=x.s#)} 

•  For this query we are looking for the existence of a tuple variable y 

(which ranges over the suppliers relation) for which we cannot find 

the existence of a tuple variable y (which ranges over spj) that makes 

the predicate true.  In other words, if there does exist a tuple in spj 

with the same supplier number as in the y tuple variable and for 

which the part number is P2, then this is a supplier who ships part P2 

and they should not be included in the result relation. 

  

relational algebra:  ((s#)(s)) – ((s#)((p#=P2)(spj)))  

Example Tuple Relational Calculus Queries (cont.) 
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  • In general, the quantifiers can be transformed into the 

other quantifier with negation, and/or replace one 

another, a negated formula becomes un-negated and an 

un-negated formula becomes negated. 

• There are however, some special cases which arise in 

these equivalences of which you need to be aware. 

• A few of the more important ones are shown below along 

with one which is commonly used by many people, but is 

incorrect! 

 

Quantifier Implications and Equivalences 
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  1.    x(P(x))  not x(not P(x)) 

2.    not(x)(P(x))  not(x)(P(x)) 

3.    (x)(P(x))  not (x)(not (P(x))) 

4.    (x)(P(x) and Q(x))  not (x)(not (P(x)) or not (Q(x))) 

5.    (x)(P(x) or Q(x))  not (x)(not (P(x)) and not (Q(x))) 

6.    (x)(P(x)) or Q(x))  not (x)(not (P(x)) and not (Q(x))) 

7.    (x)(P(x) and Q(x))  not (x)(not (P(x)) or not (Q(x))) 

8.    (x)(P(x))  (x)(P(x)) 

9.     not(x)(P(x))  not(x)(P(x))  this implication is not true! 

 

Quantifier Implications and Equivalences (cont.) 
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  • Equivalence 1 can be interpreted in the following manner when 
considering the right hand side:  “there does not exist a value for x 
for which the predicate is not true”.  The flip side of this is, of 
course, for every value of x the predicate must be true. 

• Implication 2 can be interpreted in the following manner: (left hand 
side)“there does not exist a value for x for which the predicate is 
true” implies that (right hand side) the predicate is not true for every 
value of x”.  This one you might have to think about for a minute.  
Looking at it from another direction consider this: if there exists a 
value of x that makes the predicate true, then the not in front of the 
expression would result in a value of false.  So, the only way that the 
left hand side could be true would be the situation when all possible 
values of x cause the predicate to be false, in which case the not will 
evaluate to true.  From the right hand side think of it this way: if 
there is one single value that x can assume which makes the 
predicate false, then the universal quantifier will return false, yet the 
negation in front of it would return true for this case.  

 

Quantifier Implications and Equivalences (cont.) 
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  • Implication 9 is simply wrong, but it is often mistakenly 
used, especially by beginning database students … so 
don’t you become one of these who do it wrong! 

• The implication is that if not every value of x makes the 
predicate true then this implies that there does not exist a 
value of x which does make the predicate true.  Clearly, 
this is not necessarily the case. 

– As an illustration, suppose that there are 12 tuples in our 
universal space, so x can assume any of these 12 tuples.  Now 
let’s suppose that 10 of these tuples satisfy the predicate P and 2 
of these tuples do not satisfy P.  Then clearly not every value of x 
satisfies P, but at the same time we cannot say that there does not 
exist any values of x which satisfy P, since in this case there were 
10 of them that did.  So clearly, this implication is false, so don’t 
be tempted to use it.   

 

Quantifier Implications and Equivalences (cont.) 


